87.1 rational maps of curves
When a pt is located in the domain of a rational map.
F: X...>Y dominating rational map. F: R(Y) C> R(X)

$$U_Q(Y) = Q \Rightarrow F(Q_Q(Y)) = C_P(X) \Rightarrow F(M_P(x_1) = M_Q(Y).$$

 $F(P) = Q \Rightarrow F(Q_Q(Y)) = C_P(X) \Rightarrow F(M_P(x_1) = M_Q(Y).$
 $F(P) = Q \Rightarrow F(Q_Q(Y)) = F(q) = 9 \circ F$ is defined at P
 $\Rightarrow F(q) \in O_P(X)$
 $\cdot \# g \in M_Q(Y) \Rightarrow F(q) = g \circ F(p) = g(Q) = 0$
 $\Rightarrow F(q) \in M_P(Y).$
 $Def: (Amh), (B, m_B) = hac. rig. A c B . B dominates A if $m_A \subseteq m_B$.
 $Ignnm_A : Iar F: X.... Y Ia a dominating rational map. $\# P \in X, Q \in Y.$
 $P \in U(F)$
 $C domin of F.$ $\Leftrightarrow C_Q(X) dominates F(C_Q(Y))$
 $Q = F(P).$
 $Pf: \Rightarrow): clean$
 $(= f): P \in V. Q \in W$ after neighborhood
a subset $\Gamma(W) = R(M_1, \dots, M_n).$ $F(y_i) = \frac{A_i}{b_i} (a_{i,b_i} \in P(W))$
 $b = b_1 \dots b_n \Rightarrow F(\Gamma(W)) \subset P(V_b)$
 $\Rightarrow \exists ! f : V_b \Rightarrow W$
 $\# g \in \Gamma(W), g(Q) = 0 \Rightarrow g \in m_Q \Rightarrow F(q) \in M_P$
 $\Rightarrow g \cdot f(m) = F(q) (p) = 0 \Rightarrow f(P) = Q$$$

Def:
$$K/k = field excension. A subring $A \subseteq K$ containing k is called
a local ring of K if A is local and $K = Frac(A)$.
a discrete valuation ving of K is a DVR that is a local
ving of $K$$$

e.g.
$$V = variety$$
, $P \in V$ then
1) $U_p(v)$ is a local ring of $k(v)$
2) $V = curve$ by P simple $\Rightarrow O_p(v) = DVR$ of $k(v)$.

Thm:
$$C = Proj. curve. K = k(c). L/K = field exet. R = DVR of L.Assume R \neq K. Then $\exists ! P \in C$ s.t.
R dominates $Op(C)$.$$

Bristence: . We may assume $C \hookrightarrow \mathbb{P}^n$, $C \cap U_i \neq \phi \neq i = 1, \dots, n \neq 1$. (or, we may replace \mathbb{P}^n with \mathbb{P}^{n-1}) $\Rightarrow \Gamma_{h}(C) = k [X_{1}, ..., X_{ny}] / I(C) = k [x_{1}, ..., x_{ny}] \quad (x_{i} \neq 0)$ N := max ord (x, /x,)
 inj Assume and (25/Xm) = N, then $\operatorname{vrd}\left(\chi_{i} \middle| \chi_{nr_{i}}\right) = \operatorname{vrd}\left(\chi_{j} \middle| \chi_{nr_{i}}\right) + \operatorname{vrd}\left(\chi_{i} \middle| \chi_{j}\right) = \mathcal{N} - \operatorname{vrd}\left(\chi_{j} \middle| \chi_{i}\right) \geq 0.$ · C* := affire curve corr. to CUNH, then $\Gamma(C_*) = k[\chi_1/\chi_{n+1}, \dots, \chi_n/\chi_{n+1}] \subset \mathbb{R}$ • $M = \max$. ideal of $X = M \cap P(C_*)$. Rob J.2 ⇒ V(J) = closed subvar. W of C. $\Rightarrow W \not\subseteq C_* \left(\begin{array}{c} W = C_* \Rightarrow J = \circ \\ \Rightarrow P(C_*) \setminus f_{\circ} \geq \mathbb{R}^{\times} \Rightarrow K \subseteq \mathbb{R} \\ \end{array} \right)$ ⇒ W=1P} (pt!) (Puplo. 865) \Rightarrow R dominates $Q(C_{x}) = Q(C)$ Corl. f: C'--->C, Then. tourie t proj. curve 1) domain of finchules every simple pts of C' 2) C'= nonsingular ⇒ f = morphism (3)

$$f: (1) \Rightarrow (2) : \checkmark$$

$$(1): K = R(C), L = R(C'), R = O_{P}(C)$$

$$we may assume fits dominating (or, by Pblis to is constants)$$

$$\Rightarrow K \hookrightarrow L$$

$$Thm I \Rightarrow ONTS: K \notin R.$$
Suppose NOT. Then KCRCL.
Rob 6.45 \Rightarrow L/K = f. alg. enc. \Rightarrow R = field 4. (DR + Field !)
Con. C = Proj. curve, C' = nonsingular curve. Then
 $Sf: C' \Rightarrow C \mid dominant morphism f < \frac{1:1}{2} Sf: R(C) \Rightarrow R(C') \mid homomorphism f$

Cor3. C, C'= nonsignal proj. curves.

$$C \cong C' \Leftrightarrow k(c) \cong k(c')$$

Cor4.
$$C = \text{nonstructure proj. curve. } K = k(C).$$

 $f P \in C f \iff f DVR \text{ of } K f$
 $P \xrightarrow{T} Op(C).$
 $P(C) = DVR \Rightarrow T : well defined maps$

•
$$\mathcal{T}$$
 injective: Then 1
• \mathcal{T} Surjective: $\mathcal{F} \mathcal{R} = DV\mathcal{R}$ of \mathcal{K} .
 $\Rightarrow \exists ! \mathcal{P} \ 5.t : \mathcal{R}$ dominant $\mathcal{O}_{\mathcal{P}}(C)$.
 $\mathcal{O}_{\mathcal{P}}(c) \subseteq \mathcal{R} \subseteq \mathcal{K}$
 $\mathcal{P}_{\mathcal{P}}(c) \Rightarrow \mathcal{R} = \mathcal{O}_{\mathcal{P}}(c)$.

$$K = k(C)$$

$$X := \{ R \in K \mid DVR/k \}$$

$$Top. on X : \bigcup_{C} C X : open \iff X \setminus U = finite$$

$$\Rightarrow C \longrightarrow X \qquad homeomorphism$$

$$P \longmapsto O_{P}(C)$$

$$f(U, O_{C}) = \bigcap_{R \in U} O_{P}(C)$$

$$\Rightarrow C \text{ is determined up to isomorphisms by K alone!}$$

$$\Rightarrow treat function fields avoid curve ! (see Chevallags alg. fonctions f one variable ")$$

€